几十年来集成电路(IC)技术一直以极高的速度发展。

著名的穆尔(Moore)定则指出,IC的集成度(每个微电子芯片上集成的器件数),每3年左右为一代,每代翻两番。对应于IC制作工艺中的特征线宽则每代缩小30%。根据按比例缩小原理(Scaling Down Principle),特征线条越窄,IC的工作速度越快,单元功能消耗的功率越低。所以,IC的每一代发展不仅使集成度提高,同时也使其性能(速度、功耗、可靠性等)大大改善。与IC加工精度提高的同时,加工的硅圆片的尺寸却在不断增大,生产硅片的批量也不断提高。以上这些导致了微电子产品发展的一种奇妙景观:在集成度一代代提高的同时,芯片的性能、功能不断增强,而价格却不断下跌。这一现象的深远意义在于,随着微电子芯片技术的快速发展,一切微电子产品(计算机、通信及消费类产品等)也加速更新、换代;不仅新一代产品性能、功能大大超过前一代,而且价格的越来越便宜又为电子信息技术的不断推进及其迅速推广应用到各个领域创造了条件,导致了人类信息化社会的到来。 
由于集成电路栅长度的减小和集成度的增大,因此必须发展相应的制造技术,即光刻技术、氧化和扩散技术、多层布线技术和电容器材料技术。
①光刻技术 
利用波长436nm光线,形成亚微米尺寸图形,制造出集成度1M位和4M位的DRAM。i射线(波长365nm)曝光设备问世后,可形成半微米尺寸和深亚微米尺寸的图形,制造出16M位和64M位的DRAM。 
 
目前,采用KrF准分子激光器的光刻设备已经投入实用,可以形成四分之一微米尺寸的图形,制造出64M位DRAM。采用波长更短的ArF激光器的光刻设备,有可能在21世纪初投入实用。当然,为了实现这一目标,必须开发出适用的掩膜形成技术和光刻胶材料。 
X射线光刻设备的研制开发工作,已经进行了相当的时间,电子束曝光技术和3nm真空紫外线曝光技术,也在积极开发之中,哪一种技术将会率先投入实用并成为下一阶段的主流技术,现在还难以预料。
②蚀刻技术 
在高密度集成电路制造过程中,氧化膜、多晶硅与布线金属的蚀刻技术,随着特征尺寸的不断缩小将变得越来越困难。 
显然,如果能够研制出一种可以产生均匀的平面状高密度等离子源的技术,就会获得更为理想的蚀刻效果。 
利用CER(电子回旋共振)等离子源或ICP(电感耦合等离子)高密度等离子源,并同特殊气体(如HBr等)及静电卡盘(用于精密温度控制)技术相结合,就可以满足上述电路蚀刻工艺的要求。
③扩散氧化技术 
要想以低成本保证晶体的良好质量,必须采用外延生长技术。其理由是,同在晶体制作上下工夫保证质量所需要花费的成本相比,外延生长技术的成本低得多。  离子注入的技术水平已经有很大提高,可以将MeV(兆电子伏特)的高能量离子注入到晶体内部达几微米深度。迄今采用的气体扩散法,需要在高温中长时间地扩散杂质才能形成扩散层。而现在,利用离子注入技术,可以分别地将杂质注入到任意位置,再经一次低温热处理,就可以获得同样的结果。 
 
同时,低能量离子注入技术也取得很大进展,可以形成深度小于0.1μm的浅扩散层,而且精度相当高。另外,斜方向离子注入技术也大有进展,可以在任何位置注入杂质,从而可以在低温条件下按照设计要求,完成决定晶体管性能的杂质扩散工序作业。用固相扩散法制造源漏极浅结极为有效,已经获得35nm的浅结。 
④多层布线技术 
把电阻小于铝的铜,作为下一代布线材料正在引起人们的关注。美国半导体工业协会(SIA)已经将“以铜代替铝”列入其发展规划,并制定出相应的目标和技术标准。 
铜布线采用镶嵌方法制作,并利用CMP(化学机械抛光)技术进行研磨,布线形成则使用半导体级电镀技术。铜容易在绝缘膜中扩散,所以,在采用铜布线时,需要同时采用能够防止铜扩散的势垒金属技术。 
用离子束喷射法替代常用的真空溅射法,将金属喷射到硅圆片表面,这种方法使硅圆片不需要金属化的一侧带负电荷,然后让金属离子带正电荷,在负电荷吸引下,金属粒子沉积在硅圆片表面,形成十分均匀的金属薄膜。预计离子喷射法三年后可达到实用。 
 
在高速电路的布线中,必须同时形成低介电系数的层间膜。氧化膜的介电系数为4.0,添加氟(F)的氧化膜,其介电系数现在可以达到3.6,利用高密度等离子CVD(化学气相淀积)技术可制作含氟的氧化膜。 ⑤电容器材料 
随着DRAM集成度的提高,电容器材料——氧化膜的厚度变得越来越薄。进入90年代以来,氮化硅膜技术不断改进,并改用立体的电容器结构,以确保所必需的电容值。但是,这种技术似乎已经接近其极限,今后有可能采用迄今没有用过的新材料,如氧化钽膜(Ta2O5)和高电容率材料(BST)等。 

 

 

© 2009 be-pure.net all rights reserved.